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Automorphs and Generalized Automorphs of Quadratic Forms
Treated as Characteristic Value Relations*!

OLGA TAUSSKY
California Institute of Technology
Pasadena, California

1. INTRODUCTION

In two recent papers by Butts and Pall [1] and Butts and Estes [2]}
the equation T'AT = eB is studied, where 4, B are the matrices of
integral binary quadratic forms, T an integral 2 X 2 matrix, and ¢ is an
integer. The special case where A = B is given particular consideration.
For a fixed 4 the set of T’s and ¢’s that can occur are of interest, as a gen-
eralization of the concept of automorphs of quadratic forms. We assume
det T = 0det A4 £ 0. It is clear that either e =det T or ¢ = — det T.
For each case the corresponding T’s form a two-dimensional Z-module,
Z the ring of rational integers. Here the results are given a new interpre-
tation which sheds further light on the difference between the two cases.
This is done in Section 2. In Section 3, the relation is obtained from a
relation concerning elements in a quadratic field. This was already done
in [1] and is reformulated here. The ideas developed in Section 2 are
then translated into this point of view. In Section 4, a generalized char-
acteristic value problem is studied which may lead to further interesting
generalizations.

* Dedicated to Professor A, M. Ostrowski on his 75th birthday.
t This work was carried out in part under NSF grant 3909.

! Thanks are due to these authors for information concerning their not yet
published results. Thanks are also due to E. C. Dade for assistance with parts of
Section 3. Further, D. Estes contributed helpful remarks, in particular by pointing
out that the w’s in (7) are not necessarily integers.
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The equation

TAT = ed (1)

. . ¢ t a b . .

with T =1 1%} 4 v( can be interpreted as a characteristic
oy oo b ¢

value relation in which the matrix 4 is a characteristic vector of the

3 « 3 matrix

£ 2451t tis
tllt?.l t12t21 + t]1t22 t12t22 ’
£ otas £

which is the symmetric product Po(7T) of T and its transpose 77 (also
called the second induced or power matrix of T'; see, e.g., Wedderburn,
{3, p. 76]) and e is a corresponding characteristic root. Let 7,, 7, be the
characteristic roots of 7. Then it is known that P,(7) has the characteristic
roots 7,2, 1,7, 7,%. Hence e is one of these numbers. Since det 7" = y7,,
we immediately see that ¢ = det T is one possibility. In the onlv other

case where ¢ — — det T we then have
T - T
or
Ty2 = = TyTy.

Hence trace 7 = 7; + 1, = 0. In this case ¢ = 1,2 = 7,% and P,(7) has
a double characteristic root and all characteristic roots are rational, while
in the case that e = 7,7, there is in general, only one rational characteristic
root and the two others belong to a quadratic field and are conjugate
with respect to this field. The same holds about the corresponding
characteristic vectors 4.

The case that 1,2 = 1,1, or 1,2 = 1yT, implies that t; = 1, and det T
is a square. The product P,(T) has then a triple root.

The elementary divisors of Py(7) (considered as a matrix over the
field Q of rational numbers) compared with those of 7 have not been studied
much until recently. But the following result has now been communicated
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by M. Marcus and S. Pierce [4]: T has linear elementary divisors if and
only if P,(T) has the same property.

There is no doubt that the method of this chapter can be used for
n-dimensional problems.

3a. A representation of an order in a quadratic field which leadsto TAT' = eAd
Here we explain the connection between Eq. (1} and a representation
of the elements of an order in a quadratic number field.
Let F be a quadratic number field, a a Z-module with «,, «, as basis,
a; €F. Let x, yeZ. The function which maps the pair x, y into Q via

X,y — normF/Q(xoc1 + ya,)

is a quadratic form in x, y. Its matrix differs from 4 by an integral
factor.
. . A .
Next we associate a matrix T = with elements in Z to

21 22
every we€ (a:a) by the relations

% fn o hig\ (%
w(“z) - (t21 t22> (“2) ' ®

norm(xwa, + ywa,) = norm o norm(xe, + ya,), (3)

On one hand*

and on the other hand by (2)

norm (% + V) + (f12% -+ fee¥)g] = norm e norm(xa, -+ yeo). (4)

Putting ¢ = norm @ and T = T, relation (4) leads to relation (1) for
the matrix 4 which corresponds to the form norm(xa, -+ va,). The matrix
T has as characteristic roots @ and its conjugate @ and e = det 7.
The w’s form an integral order.

* Norm will always mean normpgyg. ]
. B &y )
t The same process could be carried out for o P =T where 8, 3, forma
2 ]

Z-basis for another ideal b with w € (a:b). This then leads to TAT’ = ¢B where
B is the matrix which corresponds to the form norm(x8, 4 3f,). In this case e? det B =
(det T)2% det 4.
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3b. The converse of Section 3a and the two types of representations obtained
from TAT = ¢4
Conversely, let A be the matrix of an integral quadratic form f(x, v)
which we assume to have irrational linear factors
(voy + vop), (%% 4 Vaip)
when the bar denotes conjugation in the quadratic field to which o, «,
belong. Let (1) hold. This is equivalent to
[t + t oy + (fp¥ -+ fop¥)og] (B + 81 )8y - (Gax - fop) 2
= e(xoy + Vo) (3% + yiy). )
Use the unique factorization property in the polynomial ring F{x, v, with
I = Qlay, @), Q the rationals. It follows that for some m either

(b1 % + g V)oy + (427 + LopY)oty = @ {xa; + vty (6)

or
(tx + byy)oy + (fra® + logy)oe = O(x%; + V). (7)

In case (6) w is an integer in F and even more, w is an element of the
integral order (a:a}. This follows because (6} is equivalent to (2).* In
case (7) we obtain a new representation (see also [5]). Further (7) implies
w € (a:a). Conversely, for every such @ there exists a unique integral
T such that (7) holds. Hence, summarizing, we obtain

THEOREM 1. There @s a 1 — 1 correspondence between the integral
T’s such that (6) holds and the elements of (a:a) and between the T’s
such that (7) holds and the elements of (a : a).

Although the element o in (7) lies in F, it is not necessarily an integer,

3 4 1 = —
e.g., take 4 = (4 3>, T = (? 0), ot = B0 =4 — [T, @ == (4 |/7)/3.

THEOREM 2. Whle the 1’s corresponding to (6) have as characteristic
roots w, @, the T’s corresponding to (7) have trace T = 0, det T = — @,
characteristic roots de'), — V .

* Again this could be generalized for TA7T" == ef3.
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1

Proof. The vectors (al) ,< ) form a basis of the space V of 2 x 1
%2/ \%2

column vectors. Since

()=o) rl)=o()

the linear transformation of V defined by T has the matrix ((1 a(;) with
w

respect to this basis. This implies Theorem 2. The characteristic vectors
corresponding to the roots are

w1 )18 ()
w1 ()15 ()

3c. The characteristic value treatment for the representation
Let V be a vector space with elements vy, vy, ... . By Ve,V we
denote the symmetric part of ¥ ® V. It is the set which is fixed by the

automorphism which transforms »; ® v, into v, @ v,.
Let V be the space of all 2 x 1 column vectors with entries in F.

Let v, = (Zl>, vy = (;1>. They form a basis for V. We then have for
2 2

the 2 x 2 matrix T, studied in Sections 3a and 3b

T v = wvy,
Tw'l)z == (:)'Uz, (10)
T &, = &9,

If we define the matrix S by the relations

Sv; = vy,
(11)
Svy = vy,
we have
T Svy = @v,,
(12)

T Svy = wvy.

Linear Algebra and Its Applications 1, 349356 (1968)
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The product a @ a has as basis
vy 0,0y, Uy (D, Uy == Uy (9,0, Uy Uy

The effect of the operator P,(T,) on these vectors in the case (17 = ¢

)i

1s as follows:

T O S UL R i

Uy 5, Uy o DT ), Ty (13)
Ty (9, Uy > M2 Uy D, Ty

Hence all three characteristic vectors are independent of ¢ and the 3 x 3
operators can be diagonalized simultaneously. This agrees with the theorem
of Marcus and Pierce mentioned earlier.

The case |T',,| = —- e is covered by replacing 7", bv 7, S. The operator
Py(T,S) has the following effect:

- PO -2 . AN ey

" WU > Uy KTy,

vy B, Uy = OV @, Uy, (14)
Uy W, Uy > vy

This shows that v; ®, v, is a characteristic vector for w® which is in-
dependent of . Hence it follows that the 3 x 3 operators corresponding
to all w’s can be transformed to block (upper) triangular form simultane-
ously with a 1 x 1 block in the lower end of the diagonal. Summarizing
we have

THEOREM 3. For det I' = e the matrices Py(1) can be transformed
to diagonal form simultaneously; for det 1" = — ¢ the matrices Py(T) can
be transformed to block (upper) triangular form simultaneousiv.

4. THE GENERALIZED CHARACTERISTIC VALUE RELATIONS (7)
In matrix theory the problem of solving
(4 — AB)x =0

is usually referred to as a generalized characteristic value problem.
Relation (7) is of a similar nature. In this case the following fact holds.

Linear Algebra and Its Applications 1, 349 356 (1968)
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THEOREM 4. Let T be a fixed 2 X 2 matrix over Z. Let (o, ap) and

w satisfy (7), t.e.,
o &y
rlg)-o(s)
%y %2

Then so do (yoy, yay) and wypy~! for each yeF. Conversely, to every
2 with norm A= norm w there exists p such that (ya,, ya,) and 1
satisfy (7).

Proof. We call @ a semicharacteristic root of 7T because the
mapping 0: (8;, By) — (B, By) is called a semilinear transformation of
the vector space of V' of 2 X 1 column vectors over F, associated
with the automorphism y —# of F. This is because O(yv) = $6(v) for
allyeF,veV. Let yeF. Then

o o VL
)-ol- o2
Y%e, Ye Y \V%g

Then norm &(y/7) = norm @. Conversely, let norm & = norm 2. Then
a = (/4 has norm o« = 1. By Hilbert’s theorem 90 [6] we have a = #/yp
where 9 is another element in the same field. We then have

AW

)= i)
Y%y Y%y

We now ask: What other semicharacteristic vectors does 7 have?
This can partly be studied from relation (1), using the method of Section 2.
For e = — det T the solutions 4 of (1) form a Z-module with two linearly
independent ones among them, since the operator P,(7) has a double
root ¢ with two independent vectors (in virtue of the results in [4}). The
two linearly independent 4’s can correspond to w’s belonging to different

fieldS, e.g., fOI'
0 1
1 = R e = I,
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we have

L3
Y Q’ e

but we also have

L2
A:(z l)' oy ==

The sum of these A’s is <4
)

&= (34 5)2.

The vect
e vector (u a

uct 1s zero. Here
oy = 2,
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