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1. INTRODUCTION 

In two recent papers by Butts and Pall [l] and Butts and Estes [2]* 
the equation T’AT = eB is studied, where A, B are the matrices of 
integral binary quadratic forms, T an integral 2 x 2 matrix, and e is an 
integer. The special case where A = B is given particular consideration. 
For a fixed A the set of T’s and e’s that can occur are of interest, as a gen- 
eralization of the concept of automorphs of quadratic forms. We assume 
det T # 0 det A # 0. It is clear that either e = det T or e = - det T. 

For each case the corresponding T’s form a two-dimensional Z-module, 
2 the ring of rational integers. Here the results are given a new interpre- 
tation which sheds further light on the difference between the two cases. 
This is done in Section 2. In Section 3, the relation is obtained from a 
relation concerning elements in a quadratic field. This was already done 
in [l] and is reformulated here. The ideas developed in Section 2 are 
then translated into this point of view. In Section 4, a generalized char- 
acteristic value problem is studied which may lead to further interesting 
generalizations. 

* Dedicated to Professor A. M. Ostrowski on his 75th birthday. 

t This work was carried out in part under NSF grant 3909. 

t Thanks are due to these authors for information concerning their not yet 

published results. Thanks are also due to E. C. Dade for assistance with parts of 

Section 3. Further, D. Estes contributed helpful remarks, in particular by pointing 

out that the w’s in (7) are not necessarily integers. 
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which is the symmetric product P,(Y) of 7‘ and its transpose 7” (also 

called the second induced or power matrix of 7‘; see, e.g., \\‘rdderburn. 

13, p. 761) and e is a corresponding characteristic root. Let ti, t2 1~ the 

characteristic roots of T. Then it is known that P2( T) has the characteristic 

roots 2r2, t1t2, t2 2. Hence e is one of these numbers. Since det 7‘ -7 arty, 

we immediately see that e = det T is one possibility. In the onl!. other 

case where e -= -- det T wve then have 

or 

Hence trace T = ti + ~~ = 0. In this case e = tr2 = ta2 and P2( 1‘) has 

a double characteristic root and all characteristic roots are rational, while 

in the case that e = tl-cZ there is in general, only one rational characteristic 

root and the two others belong to a quadratic field and are conjugate 

with respect to this field. The same holds about the corresponding 

characteristic vectors A. 

The case that ti2 = arty or 122 = t1~2 implies that tr = e2 and det 7 

is a square. The product P2( T) has then a triple root. 

The elementary divisors of P,(T) ( considered as a matrix over the 

field Q of rational numbers) compared with those of T have not been studied 

much until recently. Rut the following result has now been communicated 
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by M. Marcus and S. Pierce [4]: T has linear elementary divisors if and 
only if P,(T) has the same property. 

There is no doubt that the method of this chapter can be used for 
n-dimensional problems. 

3a. A representation of an order in a quadratic field which leads to TAT’ = eA 

Here we explain the connection between Eq. (1) and a representation 
of the elements of an order in a quadratic number field. 

Let F be a quadratic number field, a a Z-module with or,, uz as basis, 
ui E F. Let x, y E 2. The function which maps the pair x, y into Q via 

x, .v + normFIQ(xal + ya2) 

is a quadratic form in x, y. Its matrix differs from A by an integral 
factor. 

Next we associate a matrix T, = 

every w E (a : a) by the relations 

with elements in Z to 

On one hand* 

norm(xo+ + YWCC~) = norm Q norm(xa, 

and on the other hand by (2) 

(2) 

+ Y%)P (3) 

norm [(t,,x + t,,y)a, + (t,,x + t,,y)qJ = norm ~normbb + Ya2). (4 

Putting e = norm co and T = T,, relation (4) leads to relation (1) for 
the matrix A which corresponds to the form norm(xal + ya.J. The matrix 
T has as characteristic roots o and 
The w’s form an integral order. 

* Norm will always mean norma,g. 

t The same process could be carried out 

its conjugate OT, and e = det T.t 

for 0 (1) = T(i) where&.p,fOrma 

Z-basis for another ideal b with o E (a : b). This then leads to TA T’ = eB where 

B is the matrix which corresponds to the form norm(x/$ -+- y/&). In this case e* det R = 

(det T) * det A. 
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3b. The converse of Section 3a and the two types of representations obtained 

from TAT’ -- r.-1 

Conversely, let -4 be the matrix of an integral quadratic form /(x, ~1) 

which we assume to have irrational linear factors 

when the bar denotes conjugation in the quadratic field to whiclr x1, x., 

belong. Let (1) hold. This is equivalent to 

1 p,,.r $ taly)q t (&p I- t,,_+,1 [(t,,.r + t,,.+q --I- (t,,.V ! t,,y)5,! 

= e( xOzl + _va,) (xE, + yii,). (5) 

Use the unique factorization property in the polynomial ring F LX, ~8 with 

I; = Q(ar, aa), Q the ration&. It follows that for some O) either 

or 

@I,.% t &qy)a, + (t,g + t22y)CC2 = A(xE, + yg. (‘7) 

In case (6) (r) is an integer in F and even more, (I) is an element of the 

integral order (a : a). This follows because (6) is equivalent to (2).* In 

case (7) we obtain a new representation (see also [5]). Further (7) implies 

(0 E (ii : a). Conversely, for every such 6 there exists a unique integral 

T such that (7) holds. Hence, summarizing, we obtain 

THEOREM 1. There is u 1 - 1 correspondence between the integral 

T’s such that (6) holds and the elements of (a: a) and between the T’s 

such that (7) holds and the elements o/ (i : a). 

Although the element (1) in (7) lies in F, it is not necessarily an integer, 

THEOREM 2. While the 7“s corresponding to (6) have as characteristic 

roots a), (5, the T’s corresponding to (7) have trace 7’ = 0, det T = - 10r5, 

characteristic roots Vwi, - ]~wG. 
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Proof. The vectors a’ 
00 

, 2 form a basis of the space V of 2 x 1 
% a2 

column vectors. Since 

the linear transformation of I/ defined by T has the matrix 

respect to this basis. This implies Theorem 2. The characteristic vectors 
corresponding to the roots are 

.,=v~~)+vqjJ 
712 = v;fJ - vqrr). 

(8) 

(9) 

3c. The characteristic value treatment for the represemtation 

Let V be a vector space with elements vl, v2,. . . . By V @I~ V we 
denote the symmetric part of V @ V. It is the set which is fixed by the 
automorphism which transforms v., @J v2 into va @ vl. 

Let V be the space of all 2 x 1 column vectors with entries in F. 

Let vr=k), v2=k). They form a basis for V. We then have for 

the 2 x 2 matrix T, studied in Sections 3a and 3b 

T,v, = WV,, (10) 

If we define the matrix S by the relations 

sv, = v2, 

(11) 
sv, = VI’ 

we have 

T,Sv, = ii%,, 
(12) 

T,Sv, = iov,. 
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The product n & a has as basis 

The effect of the operator f’2(T,,J 011 these \,uctors in the cast’ I‘,,,; c 

is as follows: 

ill ~~,, iJz mt frGJl~* $2, iI2 (13) 

Fs2 ?+i, ?I2 . (7," It2 @, i'2. 

Hence all three characteristic vectors are independent of OJ and tile 3 ,\ 3 

operators can be diagonalized simultaneousl!,. This agrees with the theorem 

of Marcus and Pierce mentioned earlier. 

The case / T,,,j = - e is covered by replacing T,,, by TC,,.S. ‘l‘ht. operator 

I),( T,,,S) has the following effect : 

1’2 $, .’ L 2 -* co2 7’1 I\jJ, 7’, 

This shows that -1 c 1 @$( 7j2 is a charactcaristic exactor for ff,fG which is iri- 

dependent of CO. Hence it follows that the 3 x 3 operators corresponding 

to all W’S can be transformed to block (upper) triangular form simultane- 

ously with a 1 Y 1 block in the lower end of the diagonal. Summarizing 

we 11avc 

THEOREM 3. For tlet 1‘ == t’ the nratriws P2( ‘I‘) cun lx tram!omed 

to diagonal jorm simultaneousl~~; /or dct 7‘ = ~ r the matrices P,(T) can 

Be transformed to block (upper) trianplur jorn1 simzlltaneollsl\‘. 

In matrix theory the problem of solving 

(-4 --- AH).\- = 0 

is usually referred to as a generalized characteristic \xlu~ problenl. 

Relation (7) is of a similar nature. In this cast the following fact holds. 

I-iJletrr .-!/gdwct uud I/s .Ipp/m,rlfm I, 34!1 356 ( I’lfiX) 
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THEOREM 4. Let T be a fixed 2 x 2 matrix over 2. Let (a,, a.$ and 

0 satisfy (7), i.e., 

Then so do (yal, yaz) and wj7y-l for each y E F. Conversely, to every 
A with norm A= norm w there exists y such that (ya,, ya2) and 1 
satisfy (7). 

Proof. We call Cu a semicharacteristic root of T because the 
mapping 0: (&, &) + (&, &) is called a semilinear transformation of 
the vector space of V of 2 x 1 column vectors over F, associated 
with the automorphism y -7 of F. This is because 8(yv) = ye(v) for 
allyEF, rr~V. Let ~EF. Then 

Then norm ~(y/y) = norm 6. Conversely, let norm Q = norm 1. Then 
ct = G/l has norm M = 1. By Hilbert’s theorem 90 [6] we have a = y/r 

where y is another element in the same field. We then have 

or 

This proves Theorem 4. 

We now ask: What other semicharacteristic vectors does T have ? 
This can partly be studied from relation (l), using the method of Section 2. 
For e = -- det T the solutions A of (1) form a Z-module with two linearly 
independent ones among them, since the operator P,(T) has a double 
root e with two independent vectors (in virtue of the results in [4]). The 
two linearly independent A’s can correspond to UI’S belonging to different 
fields, e.g., for 

T= e = 1, 
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but we also have 

The sum of these A’s is 
4 6 

i i 
(, 
, 

~ corresponding tu x1 :: 2, x2 ~= 3 - vi, 

6 = (3 + J’igp. 

The vector (__ : --~ i) is orthogonal to (i i), i.rx., the inner prod- 

uct is zero. Hcrc 
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